Preparation and characterization of biomimetic silk fibroin/chitosan composite nanofibers by electrospinning for osteoblasts culture

نویسندگان

  • Jyh-Ping Chen
  • Shih-Hsien Chen
  • Guo-Jyun Lai
چکیده

In this study, we have successfully fabricated electrospun bead-free silk fibroin [SF]/chitosan [CS] composite nanofibers [NFs] covering the whole range of CS content (0%, 25%, 50%, 75%, and 100%). SF/CS spinning solutions were prepared in a mixed solvent system of trifluoroacetic acid [TFA] and dichloromethane. The morphology of the NFs was observed by scanning electron microscope, and the average fiber diameter ranges from 215 to 478 nm. Confocal laser scanning microscopy confirms the uniform distribution of SF and CS within the composite NFs. To increase biocompatibility and preserve nanostructure when seeded with cells in culture medium, NFs were treated with an ethanol/ammonia aqueous solution to remove residual TFA and to change SF protein conformation. After the chemical treatment, SF/CS NFs could maintain the original structure for up to 54 days in culture medium. Properties of pristine and chemically treated SF/CS NFs were investigated by Fourier transform infrared spectroscopy [FT-IR], X-ray diffraction [XRD], and thermogravimetry/differential scanning calorimetry [TG/DSC]. Shift of absorption peaks in FT-IR spectra confirms the conformation change of SF from random coil to β-sheet by the action of ethanol, which is also consistent with the SF crystalline diffraction patterns measured by XRD. From TG/DSC analysis, the decomposition temperature peaks due to salt formation from TFA and protonated amines disappeared after chemical treatment, indicating complete removal of TFA by binding with ammonium ions during the treatment. This was also confirmed with the disappearance of F1s peak in X-ray photoelectron spectroscopy spectra and disappearance of TFA salt peaks in FT-IR spectra. The composite NFs could support the growth and osteogenic differentiation of human fetal osteoblastic [hFOB] cells, but each component in the composite NF shows distinct effect on cell behavior. SF promotes hFOB proliferation while CS enhances hFOB differentiation. The composite SF/CS NFs will be suitable for bone tissue engineering applications by choosing a suitable blend composition.PACS: 87.85.jf; 87.85.Rs; 68.37.Hk.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fabrication of Chitosan/Silk Fibroin Composite Nanofibers for Wound-dressing Applications

Chitosan, a naturally occurring polysaccharide with abundant resources, has been extensively exploited for various biomedical applications, typically as wound dressings owing to its unique biocompatibility, good biodegradability and excellent antibacterial properties. In this work, composite nanofibrous membranes of chitosan (CS) and silk fibroin (SF) were successfully fabricated by electrospin...

متن کامل

Response of human mesenchymal stem cells to intrafibrillar nanohydroxyapatite content and extrafibrillar nanohydroxyapatite in biomimetic chitosan/silk fibroin/nanohydroxyapatite nanofibrous membrane scaffolds

Incorporation of nanohydroxyapatite (nHAP) within a chitosan (CS)/silk fibroin (SF) nanofibrous membrane scaffold (NMS) may provide a favorable microenvironment that more closely mimics the natural bone tissue physiology and facilitates enhanced osteogensis of the implanted cell population. In this study, we prepared pristine CS/SF NMS, composite CS/SF/nHAP NMS containing intrafibrillar nHAP by...

متن کامل

Preparation and Characterization of Chitosan Binary Blend

Chitosan biopolymer represents an attractive alternative to other bio materials because of its significant physico– chemical behaviours. In order to improve chitosan’s performance, chemical modification has been carried out. Chemical modification that lead to the formation of chitosan derivatives, grafted chitosan and chitosan composites have gained much attention, extensively studied and widel...

متن کامل

Induction of Mineralized Nodule Formation in Rat Bone Marrow Stromal Cell Cultures by Silk Fibroin

Background: Silk fibroin is a suitable protein for osteogenesis by inducing markers of bone formation in the cultures of osteoblasts, so we examined the ability of this protein to induce mineralized nodules in the rat bone marrow stromal cell cultures. Methods: Bone marrow stromal cells obtained from 4 to 6 weeks old Spruge-Dawely male rats were grown in primary culture for seven days and then ...

متن کامل

Electrospun silk fibroin nanofibers promote Schwann cell adhesion, growth and proliferation

In this study, Schwann cells, at a density of 1 × 10(5) cells/well, were cultured on regenerated silk fibroin nanofibers (305 ± 84 nm) prepared using the electrospinning method. Schwann cells cultured on the silk fibroin nanofibers appeared more ordered, their processes extended further, and they formed more extensive and complex interconnections. In addition, the silk fibroin nanofibers had no...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012